Média móvel Este exemplo ensina como calcular a média móvel de uma série temporal no Excel. Uma média móvel é usada para suavizar irregularidades (picos e vales) para reconhecer facilmente as tendências. 1. Primeiro, vamos dar uma olhada em nossa série de tempo. 2. No separador Dados, clique em Análise de dados. Nota: não é possível encontrar o botão Análise de dados Clique aqui para carregar o suplemento do Analysis ToolPak. 3. Selecione Média móvel e clique em OK. 4. Clique na caixa Input Range e selecione o intervalo B2: M2. 5. Clique na caixa Intervalo e escreva 6. 6. Clique na caixa Output Range e seleccione a célula B3. 8. Faça um gráfico destes valores. Explicação: porque definimos o intervalo como 6, a média móvel é a média dos 5 pontos de dados anteriores eo ponto de dados atual. Como resultado, os picos e vales são suavizados. O gráfico mostra uma tendência crescente. O Excel não consegue calcular a média móvel para os primeiros 5 pontos de dados porque não existem pontos de dados anteriores suficientes. 9. Repita os passos 2 a 8 para intervalo 2 e intervalo 4. Conclusão: Quanto maior o intervalo, mais os picos e vales são suavizados. Média de Movimentação - MA Como exemplo da SMA, considere um título com os seguintes preços de fechamento em 15 dias: Semana 1 (5 dias) 20, 22, 24, 25, 23 Semana 2 (5 dias) 26, 28, 26, 29, 27 Semana 3 (5 dias) 28, 30, 27, 29, 28 Uma MA de 10 dias seria a média dos preços de fecho Para os primeiros 10 dias como o primeiro ponto de dados. O ponto de dados seguinte iria cair o preço mais antigo, adicione o preço no dia 11 e tomar a média, e assim por diante, como mostrado abaixo. Conforme observado anteriormente, MAs atraso ação preço atual porque eles são baseados em preços passados quanto maior for o período de tempo para o MA, maior será o desfasamento. Assim, um MA de 200 dias terá um grau muito maior de atraso do que um MA de 20 dias porque contém preços nos últimos 200 dias. A duração do MA para usar depende dos objetivos de negociação, com MAs mais curtos usados para negociação de curto prazo e MA de longo prazo mais adequado para investidores de longo prazo. O MA de 200 dias é amplamente seguido por investidores e comerciantes, com quebras acima e abaixo desta média móvel considerada como sinais comerciais importantes. MAs também transmitir sinais comerciais importantes por conta própria, ou quando duas médias se cruzam. Um aumento MA indica que a segurança está em uma tendência de alta. Enquanto um declínio MA indica que está em uma tendência de baixa. Da mesma forma, o impulso ascendente é confirmado com um crossover de alta. Que ocorre quando um MA de curto prazo cruza acima de um MA de longo prazo. Momento descendente é confirmado com um crossover de baixa, o que ocorre quando um MA de curto prazo cruza abaixo de uma implementação MA. Spreadsheet de longo prazo de ajuste sazonal e suavização exponencial É simples de executar ajuste sazonal e ajustar modelos de suavização exponencial usando Excel. As imagens e gráficos de tela a seguir são extraídos de uma planilha que foi configurada para ilustrar o ajuste sazonal multiplicativo e a suavização linear exponencial nos seguintes dados de vendas trimestrais do Outboard Marine: Para obter uma cópia do próprio arquivo de planilha, clique aqui. A versão de suavização exponencial linear que será usada aqui para fins de demonstração é a versão de Brown8217s, simplesmente porque ela pode ser implementada com uma única coluna de fórmulas e há apenas uma constante de suavização para otimizar. Normalmente, é melhor usar a versão Holt8217s que tem constantes de suavização separadas para nível e tendência. O processo de previsão prossegue da seguinte forma: (i) primeiro os dados são corrigidos de sazonalidade (ii) então as previsões são geradas para os dados ajustados sazonalmente por meio de suavização exponencial linear e (iii) finalmente as previsões ajustadas sazonalmente são quasi mensuradas para obter previsões para a série original . O processo de ajuste sazonal é realizado nas colunas D a G. O primeiro passo no ajuste sazonal é calcular uma média móvel centrada (realizada aqui na coluna D). Isto pode ser feito tomando a média de duas médias anuais que são compensadas por um período em relação um ao outro. (Uma combinação de duas médias de compensação em vez de uma única média é necessária para fins de centralização quando o número de estações é par.) O próximo passo é calcular a relação com a média móvel - ie. Os dados originais divididos pela média móvel em cada período - o que é realizado aqui na coluna E. (Isso também é chamado de componente quottrend-cyclequot do padrão, na medida em que os efeitos da tendência e do ciclo de negócios podem ser considerados como sendo tudo o que Permanece após a média de dados de um ano inteiro. Naturalmente, as mudanças mês a mês que não são devido à sazonalidade poderia ser determinada por muitos outros fatores, mas a média de 12 meses suaviza sobre eles em grande medida. O índice sazonal estimado para cada estação é calculado pela primeira média de todas as razões para essa estação particular, que é feita nas células G3-G6 usando uma fórmula AVERAGEIF. As razões médias são então redimensionadas de modo que somam exatamente 100 vezes o número de períodos em uma estação, ou 400, neste caso, o que é feito nas células H3-H6. Abaixo na coluna F, as fórmulas VLOOKUP são usadas para inserir o valor do índice sazonal apropriado em cada linha da tabela de dados, de acordo com o trimestre do ano que ele representa. A média móvel centrada e os dados ajustados sazonalmente acabam parecidos com isto: Note que a média móvel normalmente se parece com uma versão mais lisa da série ajustada sazonalmente, e é mais curta em ambas as extremidades. Uma outra planilha no mesmo arquivo do Excel mostra a aplicação do modelo de suavização exponencial linear aos dados ajustados sazonalmente, começando na coluna G. Um valor para a constante de alisamento (alfa) é inserido acima da coluna de previsão (aqui, na célula H9) e Por conveniência, é atribuído o nome de intervalo quotAlpha. quot (O nome é atribuído usando o comando quotInsertNameCreatequot). O modelo LES é inicializado ao definir as duas primeiras previsões iguais ao primeiro valor real da série ajustada sazonalmente. A fórmula usada aqui para a previsão de LES é a forma recursiva de equação única do modelo Brown8217s: Esta fórmula é inserida na célula correspondente ao terceiro período (aqui, célula H15) e copiada para baixo a partir daí. Observe que a previsão do LES para o período atual se refere às duas observações precedentes e aos dois erros de previsão anteriores, bem como ao valor de alfa. Assim, a fórmula de previsão na linha 15 refere-se apenas a dados que estavam disponíveis na linha 14 e anteriores. (É claro que, se desejássemos usar a suavização linear simples em vez de linear, poderíamos substituir a fórmula SES aqui. Podemos também usar Holt8217s ao invés de Brown8217s modelo LES, o que exigiria mais duas colunas de fórmulas para calcular o nível ea tendência Que são utilizados na previsão.) Os erros são calculados na próxima coluna (aqui, coluna J) subtraindo as previsões dos valores reais. O erro quadrático médio é calculado como a raiz quadrada da variância dos erros mais o quadrado da média. (Isto decorre da identidade matemática: VARIANCE MSE (erros) (AVERAGE (erros)) 2.) No cálculo da média e variância dos erros nesta fórmula, os dois primeiros períodos são excluídos porque o modelo não começa realmente a prever até O terceiro período (linha 15 na planilha). O valor ótimo de alfa pode ser encontrado alterando manualmente alfa até que o mínimo RMSE seja encontrado, ou então você pode usar o quotSolverquot para executar uma minimização exata. O valor de alpha que o Solver encontrado é mostrado aqui (alpha0.471). Geralmente é uma boa idéia traçar os erros do modelo (em unidades transformadas) e também calcular e traçar suas autocorrelações em defasagens de até uma estação. Aqui está um gráfico de séries temporais dos erros (ajustados sazonalmente): As autocorrelações de erro são calculadas usando a função CORREL () para calcular as correlações dos erros com elas mesmas atrasadas por um ou mais períodos - detalhes são mostrados no modelo de planilha . Aqui está um gráfico das autocorrelações dos erros nos primeiros cinco lags: As autocorrelações nos intervalos 1 a 3 são muito próximas de zero, mas a espiga no intervalo 4 (cujo valor é 0,35) é ligeiramente problemática - sugere que a Processo de ajuste sazonal não foi completamente bem sucedido. No entanto, é apenas marginalmente significativo. 95 bandas de significância para testar se as autocorrelações são significativamente diferentes de zero são mais ou menos 2SQRT (n-k), onde n é o tamanho da amostra e k é o atraso. Aqui n é 38 e k varia de 1 a 5, então a raiz quadrada de - n-menos-k é de cerca de 6 para todos eles e, portanto, os limites para testar a significância estatística de desvios de zero são aproximadamente mais - Ou-menos 26, ou 0,33. Se você variar o valor de alfa com a mão neste modelo do Excel, você pode observar o efeito sobre as parcelas de tempo de série e autocorrelação dos erros, bem como sobre o erro quadrático médio, que será ilustrado abaixo. Na parte inferior da planilha, a fórmula de previsão é quotbootstrappedquot para o futuro, simplesmente substituindo as previsões de valores reais no ponto onde os dados reais se esgotou - i. e. Onde o futuro começa. (Em outras palavras, em cada célula onde um valor de dados futuro ocorreria, uma referência de célula é inserida que aponta para a previsão feita para esse período.) Todas as outras fórmulas são simplesmente copiadas para baixo de cima: Observe que os erros para previsões de O futuro são todos computados como sendo zero. Isso não significa que os erros reais serão zero, mas sim apenas reflete o fato de que, para fins de previsão, estamos assumindo que os dados futuros serão iguais às previsões em média. As previsões de LES resultantes para os dados ajustados sazonalmente são as seguintes: Com este valor específico de alfa, que é ideal para as previsões de um período antecipado, a tendência projetada é ligeiramente alta, refletindo a tendência local observada nos últimos 2 anos ou então. Para outros valores de alfa, uma projeção de tendência muito diferente pode ser obtida. Geralmente é uma boa idéia ver o que acontece com a projeção de tendência de longo prazo quando o alfa é variado, porque o valor que é melhor para a previsão de curto prazo não será necessariamente o melhor valor para prever o futuro mais distante. Por exemplo, aqui está o resultado que é obtido se o valor de alfa é manualmente definido como 0.25: A tendência de longo prazo projetada é agora negativa em vez de positiva Com um menor valor de alfa, o modelo está colocando mais peso em dados mais antigos em A sua estimativa do nível e da tendência actuais e as suas previsões a longo prazo reflectem a tendência descendente observada nos últimos 5 anos, em vez da tendência ascendente mais recente. Este gráfico também ilustra claramente como o modelo com um valor menor de alfa é mais lento para responder a pontos de quotreação nos dados e, portanto, tende a fazer um erro do mesmo sinal para muitos períodos em uma linha. Seus erros de previsão de 1 passo são maiores em média do que aqueles obtidos antes (RMSE de 34,4 em vez de 27,4) e fortemente positivamente autocorrelacionados. A autocorrelação lag-1 de 0,56 excede largamente o valor de 0,33 calculado acima para um desvio estatisticamente significativo de zero. Como uma alternativa ao avanço do valor de alfa para introduzir mais conservadorismo em previsões de longo prazo, um fator quottrend de amortecimento é às vezes adicionado ao modelo para fazer a tendência projetada aplanar após alguns períodos. O passo final na construção do modelo de previsão é o de ter uma razão razoável para as previsões de LES, multiplicando-as pelos índices sazonais apropriados. Assim, as projeções reseasonalized na coluna I são simplesmente o produto dos índices sazonais na coluna F e as previsões de LES estacionalmente ajustadas na coluna H. É relativamente fácil calcular intervalos de confiança para as previsões de um passo-frente feitas por este modelo: primeiro Calcular o RMSE (erro quadrático médio, que é apenas a raiz quadrada do MSE) e, em seguida, calcular um intervalo de confiança para a previsão ajustada sazonalmente adicionando e subtraindo duas vezes o RMSE. (Em geral, um intervalo de confiança de 95 para uma previsão de um período antecipado é aproximadamente igual à previsão de pontos mais ou menos duas vezes o desvio padrão estimado dos erros de previsão, assumindo que a distribuição de erro é aproximadamente normal eo tamanho da amostra É grande o suficiente, digamos, 20 ou mais. Aqui, o RMSE em vez do desvio padrão da amostra dos erros é a melhor estimativa do desvio padrão de futuros erros de previsão, porque leva bias, bem como variações aleatórias em conta.) Os limites de confiança Para a previsão ajustada sazonalmente são então reseasonalized. Juntamente com a previsão, multiplicando-os pelos índices sazonais apropriados. Neste caso o RMSE é igual a 27,4 e a previsão ajustada sazonalmente para o primeiro período futuro (Dec-93) é 273,2. De modo que o intervalo de confiança ajustado sazonalmente é de 273,2-227,4 218,4 para 273,2227,4 328,0. Multiplicando esses limites por Decembers índice sazonal de 68,61. Obtemos limites de confiança inferior e superior de 149,8 e 225,0 em torno da previsão de ponto Dec-93 de 187,4. Os limites de confiança para as previsões de mais de um período de tempo em geral aumentarão à medida que o horizonte de previsão aumentar, devido à incerteza quanto ao nível e à tendência, bem como aos fatores sazonais, mas é difícil computá-los em geral por métodos analíticos. (A maneira apropriada de calcular os limites de confiança para a previsão do LES é usando a teoria ARIMA, mas a incerteza nos índices sazonais é outra questão.) Se você quer um intervalo de confiança realista para uma previsão mais do que um período à frente, A sua melhor aposta é usar métodos empíricos: por exemplo, para obter um intervalo de confiança para uma previsão de duas etapas à frente, você poderia criar outra coluna na planilha para calcular uma previsão de duas etapas para cada período ( Por bootstrapping a previsão one-step-ahead). Em seguida, calcule o RMSE dos erros de previsão em duas etapas e use isso como a base para um intervalo de confiança de 2 passos à frente.
No comments:
Post a Comment